什么是幂函数?
幂函数定义:形如y=x^a(a为实数)的函数,即以底数为自变量,幂为因变量,指数为常量的函数称为幂函数。例如函数y=x y=x、y=x、y=x(注:y=x=1/x y=x时x≠0)等都是幂函数。
幂函数图像必须出现在第一象限而不是第四象限。它是否出现在第二和第三象限取决于函数的奇偶性。幂函数图像最多只能出现在两个象限中。如果幂函数图像与坐标轴相交,则交点必须是原点。
扩展资料:
幂函数性质:
当α0时,幂函数y=xα有下列性质:图像都经过点(1,1)(0,0);函数的图像在区间[0,+∞)上是增函数;在第一象限内,α1时,导数值逐渐增大;α=1时,导数为常数;0α1时,导数值逐渐减小,趋近于0。
当α0时,幂函数y=xα有下列性质:图像都通过点(1,1);图像在区间(0,+∞)上是减函数;(内容补充:若为X-2,易得到其为偶函数。利用对称性,对称轴是y轴,可得其图像在区间(-∞,0)上单调递增。其余偶函数亦是如此)在第一象限内,有两条渐近线(即坐标轴),自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
参考资料来源:百度百科——幂函数
幂函数知识点归纳有哪些?
性质:
幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点。
取正值:
当α0时,幂函数y=x^a有下列性质。
a、图像都经过点(1,1)(0,0)。
b、函数的图像在区间[0,+∞)上是增函数。
c、在第一象限内,α1时,导数值逐渐增大;0α1时,导数值逐渐减小,趋近于0。
取负值:
当α0时,幂函数y=x^a有下列性质:
a、图像都通过点(1,1)。
b、图像在区间(0,+∞)上是减函数。
c、在第一象限内,有两条渐近线,自变量趋近0,函数值趋近+∞,自变量趋近+∞,函数值趋近0。
取零:
当a=0时,幂函数y=xa有下列性质。
a、y=x0的图像是直线y=1去掉一点(0,1)。它的图像不是直线。(00没有意义)。
定义域和值域:
当a为不同的数值时,幂函数的定义域的不同情况如下:
如果a为负数,则x肯定不能为0,不过这时函数的定义域还必须根据a的奇偶性来确定,即如果同时p为奇数, 则x不能小于0,这时函数的定义域为大于0的所有实数;如果同时p为偶数,则函数的定义域为所有非零实数。
当x为不同的数值时,幂函数的值域的不同情况如下:
在x大于0时,函数的值域总是大于0的实数。在x小于0时,则只有同时q为奇数,函数的值域为非零的实数。而只有a为正数,0才进入函数的值域。
幂函数知识点归纳有哪些?
幂函数知识点如下:
1、一般来说,y=xα (α是有理数)的函数,即以底为参数,以幂为从属变量,以指数为常数的函数称为幂函数。
2、根据幂次函数的奇偶性,可以使图象经过二、三象限。若幂函数为奇数,其图象就会经过第三个象限。
3、如果a=p/q,q和p都是整数,则x^(p/q)=q次根符号(x的p乘),如果q是奇数,则函数的定义域是R,如果q是偶数,函数的定义域是[0,+co)。
4、当x是不同的值时,在x大0时,该函数的值范围总是比0的实际值大。当x小于0时,只有一个同时q是奇数,一个函数的值是一个非零的实数。如果a是一个正的,那么0就会进入到这个函数的数值范围中。
5、排除0和负数两种可能性,即x0,a可以是任意实数;排除此可能性О、也就是说,x零和零的所有实数,q不是偶数;排除负数的可能性。
还木有评论哦,快来抢沙发吧~