函数的基本知识(函数怎么学最简单方法)

语宇社区 情感日志 130 0

函数的知识点总结

临近考试,各科都会对知识点进行总结,那么,以下是我给大家整理收集的函数的知识点总结,内容仅供参考。

函数的知识点总结:

   一、函数的单调性

在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.

f′(x)≥0f(x)在(a,b)上为增函数.

f′(x)≤0f(x)在(a,b)上为减函数.

二、函数的极值

1、函数的极小值:

函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其它点的函数值都小,f′(a)=0,而且在点x=a附近的左侧f′(x)0,右侧f′(x)0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.

2、函数的极大值:

函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近的其他点的函数值都大,f′(b)=0,而且在点x=b附近的左侧f′(x)0,右侧f′(x)0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.

极小值点,极大值点统称为极值点,极大值和极小值统称为极值.

三 、函数的最值

1、在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.

2、若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.

四、求可导函数单调区间的一般步骤和方法

1、确定函数f(x)的定义域;

2、求f′(x),令f′(x)=0,求出它在定义域内的一切实数根;

3、把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;

4、确定f′(x)在各个开区间内的符号,根据f′(x)的符号判定函数f(x)在每个相应小开区间内的增减性.

   五、求函数极值的步骤

1、确定函数的定义域;

2、求方程f′(x)=0的根;

3、用方程f′(x)=0的根顺次将函数的定义域分成若干个小开区间,并形成表格;

4、由f′(x)=0根的两侧导数的符号来判断f′(x)在这个根处取极值的情况.

六、求函数f(x)在[a,b]上的最大值和最小值的步骤

1、求函数在(a,b)内的极值;

2、求函数在区间端点的'函数值f(a),f(b);

3、将函数f(x)的各极值与f(a),f(b)比较,其中最大的一个为最大值,最小的一个为最小值.

特别提醒:

1、f′(x)0与f(x)为增函数的关系:f′(x)0能推出f(x)为增函数,但反之不一定.如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0,所以f′(x)0是f(x)为增函数的充分不必要条件.

2、可导函数的极值点必须是导数为0的点,但导数为0的点不一定是极值点,即f′(x0)=0是可导函数f(x)在x=x0处取得极值的必要不充分条件.例如函数y=x3在x=0处有y′|x=0=0,但x=0不是极值点.此外,函数不可导的点也可能是函数的极值点.

3、可导函数的极值表示函数在一点附近的情况,是在局部对函数值的比较;函数的最值是表示函数在一个区间上的情况,是对函数在整个区间上的函数值的比较.

初中函数入门基础知识有哪些?

初中函数入门基础知识如下。

一、熟悉坐标系

在初一函数学习过坐标轴以后,我们在初二阶段开始学习坐标系,坐标系是所有函数的容器,在所有的函数里面需要坐标系来体现的。

二、学会表示点

另外需要学会初中函数表示点,学会利用横纵坐标来表示点的位置和特点。学会表示点的位置,点的移动和点的特性。

三、要充分利用抛物线顶点的作用

要能准确灵活地求出顶点,形如y=a(x+h)2+K→顶点(-h,k),对于其它形式的二次函数,我们可化为顶点式而求出顶点。

利用顶点画草图,在大多数情况下,我们只需要画出草图能帮助我们分析、解决问题就行了,这时可根据抛物线顶点,结合开口方向,画出抛物线的大致图象。

函数知识点有哪些?

函数知识点有如下:

一、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。

二、在Rt△ABC中,∠C为直角,则∠A的锐角三角函数为(∠A可换成∠B)。

三、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。

四、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。

五、正弦、余弦的增减性:当0°≤α≤90°时,sinα随α的增大而增大,cosα随α的增大而减小。

六、正切、余切的增减性: 当0°α90°时,tanα随α的增大而增大,cotα随α的增大而减小。

函数的基本性质知识点

函数的基本性质有有界性,奇偶性,单调性和周期性.

图像没有间断的函数在闭区间上一定是有界的,sinx和cosx整体有界.

奇偶性只对定义在对称区间上的函数讨论,如果f(x)=f(-x),则是偶函数,图像关于y轴对称;若f(x)=-f(-x),则是奇函数,图像关于原点对称,证明方法一般是定义法,代入验证.有些常用的性质:两个奇函数的乘积或商是偶函数,一个奇函数和一个偶函数的乘积或商是奇函数;偶函数施加奇函数的法则是偶函数;奇函数施加偶函数的法则是偶函数,奇函数施加奇函数的法则是奇函数.如sinx是奇函数,x^2是偶函数,(sinx)^2是偶函数,sinx^2是偶函数;x^3是奇函数,sinx^3是奇函数.

单调性一般只对区间讨论,方法是定义法,即设x1周期性一般用定义证明,即若f(x+T)=f(x),则T是周期.

初中函数入门知识点

函数是我们初中数学学习的重点,接下来给大家分享一些初中函数入门的知识点,带领大家走进函数的世界。

函数入门的相关概念

自变量(函数):一个与它量有关联的变量,这一量中的任何一值都能在它量中找到对应的固定值。

因变量(函数):随着自变量的变化而变化,且自变量取唯一值时,因变量(函数)有且只有唯一值与其相对应。

函数值:在y是x的函数中,x确定一个值,y就随之确定一个值,当x取a时,y就随之确定为b,b就叫做a的函数值。

元素输入值的集合X被称为f的定义域;可能的输出值的集合Y被称为f的值域。函数的值域是指定义域中全部元素通过映射f得到的实际输出值的集合。

一次函数

(一)在某一个变化过程中,设有两个变量x和y,如果可以写成y=kx+b(k≠0),(k为一次项系数,b为常数),那么我们就说y是x的一次函数,其中x是自变量,y是因变量。特别的,当b=0时,y=kx(k≠0),称y是x的正比例函数。

(二)一次函数的性质

(1)y的变化值与对应的x的变化值成正比例,比值为k。

即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。

(2)当x=0时,b为函数在y轴上的交点,坐标为(0,b)。

当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。

(3)k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。

(4)当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。

(5)函数图象性质:当k相同,且b不相等,图像平行;

当k不同,且b相等,图象相交于Y轴;

当k互为负倒数时,两直线垂直。

(6)平移时:上加下减在末尾,左加右减在中间。

二次函数

(一)二次函数的基本表示形式为y=ax²+bx+c(a≠0)二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。它的定义是一个二次多项式(或单项式)。

(二)二次函数的性质

(1)二次函数的图像是抛物线,抛物线是轴对称图形。对称轴为直线x=-b/2a。

(2)二次项系数a决定抛物线的开口方向和大小。当a0时,抛物线开口向上;当a0时,抛物线开口向下。|a|越大,则抛物线的开口越小;|a|越小,则抛物线的开口越大。

(3)一次项系数b和二次项系数a共同决定对称轴的位置。

一次项系数b和二次项系数a共同决定对称轴的位置。当a与b同号时(即ab0),对称轴在y轴左侧;当a与b异号时(即ab0),对称轴在y轴右侧。

(4)常数项c决定抛物线与y轴交点。抛物线与y轴交于(0,c)。

函数入门基础知识是什么?

函数入门基础知识如下:

1、一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。

2、对应关系:只能一个自变量x对应一个因变量y,也就是一、一对应。

3、二次函数的基本表示形式为y=ax²+bx+c(a≠0)。二次函数最高次必须为二次,二次函数的图像是一条对称轴与y轴平行或重合于y轴的抛物线。

4、奇函数的图像关于原点中心对称(定义域关于原点对称)。

5、函数满足f(x)的导函数大于0,则f(x)单调递增,对应的自变量的取值范围为单调递 增区间。

发布评论 0条评论)

  • Refresh code

还木有评论哦,快来抢沙发吧~